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X-ray Absorption Factors for Ellipsoidal Crystals* 
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The absorption factor integral for a general ellipsoidal crystal was transformed to spherical polar 
coordinates. The resulting exponential in the integral was expanded in a power series and the triple 
integration was carried out term by term. The process was stopped after the fifth order term but 
could be carried further. Four integrals could not be directly integrated and were evaluated by 
series expansions and integrations. The resulting series were tabulated as a function of one parameter. 
The termination of the absorption factor series with the fifth order term gives results for a sphere 
with < 2 % error for/~R = 1.0. 

Introduction 

The ellipsoidal crystal  is a good approximat ion  to 
m a n y  real crystal  forms, and  ellipsoidal absorpt ion 
factor corrections should be satisfactory for f i lm 
accuracies with m a n y  crystal  forms. In  addition, 
grinding an anisotropic crystal  quickly produces ellip- 
soids and  m a y  not produce spheres even after con- 
t inued  grinding. The size of the f inal  spheres, if any,  
m a y  also be too small.  Consequently,  very  accurate 
ellipsoidal corrections are useful for counter work with 
such crystals. 

The diff iculty of carrying out the required integra- 
t ion in such a ease for each reflection is prohibit ive.  
Because of the large number  of parameters  affecting 
the ellipsoidal absorpt ion factor, t abula t ion  of the 
absorpt ion factor is not feasible. The only remaining 
possibil i ty is to obta in  the ellipsoidal absorption factor 
as a funct ion of its parameters.  This required an 
analyt ica l  integrat ion of the expression 

A=I/V~ l exp { - # ( ~ 1 +  ~e)}dV, (1) 
crystal  
volume 

where A is the absorpt ion factor, Vc is the volume of 
the .crys ta l ,  # is the l inear absorption coefficient for 
the crystal,  ~ and ~2 are the pa th  lengths in the 
crystal  of the incoming and  diffracted X-ray  beam 
element.  By  expanding the exponent ia l  in the inte- 
grand, the integrat ion m a y  be carried out. The labor 
of integrat ing each te rm of the series is such tha t  the 
series is t e rmina ted  as soon as is possible. The choice 
made here gives, in the special case of a sphere, 
accurate absorption factors up to a #R  of 1.4. This is 
a very  useful range for crystals with # ~< 100. 

Derivat ion of the absorpt ion factor equation 

The first step is to express (1) in a more suitable 
coordinate system. The t ransformat ion 

* Contribution No. 803. Work was performed in the Ames 
Laboratory of the U.S. Atomic Energy Commission. 

x~=xi/ai ( i=  1, 2, 3) (2) 

has the Jacobian  ala2a3, where the at are the axes 
of the ellipsoid. The absorpt ion factor (1) can now be 
wri t ten as 

A=(1/Vc) f exp {-~(~i+e2)}ala2aadV', (3) 

where dV'=dx~dx~dx~. Since the volume of the crys- 
tal  is 

Vc = ~ ~ala2a3 (4) 

the alag.a3 factor in (3) will cancel. The l imits  of inte- 
gration in (1) correspond to the surface of the ellipsoid 

3 
,~ (xi/a~) 2 = 1 , (5) 
i = l  

where x~ are the components of a vector from the 
origin to the surface of the ellipsoid. The transforma- 
tion (2) now gives as the l imit ing surface 

3 

.~." (x~)2= 1 , (6) 
i = 1  

which is a sphere of uni t  radius. We can now write 
(1) a s  

3 
f exp {-- # ( ~  + Q2)}dV'. A =i -~  .,u~t (7) 

sphere 

The index i - -  1, 2 will be used to denote the variables 
referring to the incoming and outgoing X-ray  beam. 
Thus ~ represents either Q1 or Q2. Let n l  represent 
a uni t  vector defining the direction of the incoming 
X-ray  beam and let n2 represent a uni t  vector defining 
the negative of the outgoing X-ray  beam direction. 
Let r~ represent a vector from the origin to the 
entrance point  on the ellipsoidal surface of n~. Let r 
represent a vector from the origin to the volume 
element  under  consideration. The relat ionships of 
these vectors are shown in Fig. 1. 
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Fig. 1. Coordinate  sy s t em for the  ellipsoid, based  on uni t  
vectors  e~ along the  axes of the  ellipsoid, n 1 is a uni t  vec tor  
in direct ion of incoming X - r a y  b e a m  and  ng. is a un i t  vec tor  
in the  direct ion opposi te  to the  outgoing X - r a y  beam.  
@~ are corresponding pa th  lengths in the  crystal .  

x~ -/N1 

R1 

.~-~ 

Fig. 2. T rans fo rmed  coordinate  sys tems.  Each  vec to r  com- 
ponent  is ob ta ined  f rom the  vec tors  of Fig. 1 b y  dividing 
b y  the  corresponding ellipsoidal axis. The equa t ion  for the  
ellipsoid goes into an equa t ion  for a sphere under  this 
t ransformat ion.  

By t ransforming the vectors in Fig. 1 as in (2), 
we obtain the corresponding capital  let ter  vectors of 
Fig. 2, where N~ are no longer uni t  vectors. We must  
now obta in  an expression for @i. We have, from 
Fig. 1, 

r i = r -  @ini,  (8) 
which becomes 

Ri  = R- -  @iNi (9) 

after t ransformat ion by  (2). Since 

R~= 1 ,  (10) 

we can solve (10) for @i and obtain 

@i=l/Nt{R cos yJi + [1 - R 2  sin2 yJi]½}, (11) 
where 

R. Ni =RNi cos ~0i. (12) 

N1 

J 

.~_~ N2 

~'1 ~'2 

. y  

Fig. 3. Spherical  polar  coordinates.  The coordinate  axes  
X,  Y and  Z are chosen as above  for convenience in the  
der iva t ion  of (13). (N 1 is parallel to Z and N 2 is in the  YZ 
plane.) 

If (7) is t ransformed into spherical  polar coordinates 
as in Fig. 3, the integrat ion can be carried out after 
expressing ~fl~ in terms of F1 as 

cos yJ~ = cos ~01 cos (~ - 99) + sin y)l sin ( ~ -  ~0) cos a . 
(13) 

Interchange of N1 and N2 will not  affect the  value  
of the integral,  and so interchanging subscripts in (13) 
s imply  amounts  to a change in the definit ion of the  
polar coordinates. Consequently, as a result  of this  
invariance,  we can write 

I (Nl@l)n(N2@2)mdVt= I (Nl@l)m(N2@2)ndV#" (14) 

Expans ion  of the in tegrand of (7) in a power series 
gives 

exp - / z  (@1 + @~.) = ~ ( - #)J (@1 + @e)J/(j) ! 

If we now integrate this  expression, while using (14) 
to combine terms, we obtain 

3 1 1 /z 2 

#2 ~u z 

where f i  = Ni @i. The major i ty  of the  integrals required 
in (16) can be expressed in terms of other, simpler, 
integrals and  either evaluated directly or by  the  use 
of the definite integrals compiled by  D e H a a n  (1939). 
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Even so, the process is quite tedious. There is no 
reason, other than the labor involved, why the process 
could not be continued through additional terms. 
At the present time the integration is carried out 
through the terms involving #~. The addition of only 
a few extra terms would increase substantially the 
range of convergence of the resulting series because 
the factorial in the denominator is just becoming 
dominant. At this point, there remain only four 
integrals involving, among other quantities, products 
of [1 - R  e sine ~]½ [1 - R  e sin e ~ve]½ which could not be 
evaluated. In each such case, the argument was ex- 
panded in multiple power series and the general term 
integrated. The resulting series were then summed by 
writing a For Transit  program for the IBM 650. 
These integrals are only a function of ~ and do not 
vary rapidly. Consequently, it was sufficient to carry 
out the summations for only a relatively few values 
of ~ and to use Lagrangian interpolation to sub- 
tabulate. 

The series expression for A was terminated at  the 
point where the factorial in the denominator is 
becoming dominant. Consequently, convergence above 
#R = 1 for the limiting case of a sphere is very poor. 
Since the series is an alternating series, the use of the 
Euler transformation as described by Booth (1955) 
leads to great improvement in accuracy near the 
values of /uR--1 and extends the useful accuracy to 
/xR----1.4. The Euler transformation gives the sum of 
the series 

o ~  

S . = . ~  (-- l) iui  (17) 
i=0 

aS 

S = ½ [ u o - ~ l u o + ¼ / ~ 2 u o - ~ A ~ u o +  . . . ]  , (18) 

where AUo=Ux-Uo. The best results are obtained by 
summing the first three terms directly and trans- 
forming the last three. 

A = I -  F + ~ + t t  2 + 

+#2 1 [ 1 l t t a ( 1  1 ) 1  nl (~) -~cos~  - ~ + ~  

( 1 ) [ 7  1 1 ] _#8  : + ~ ~iv-~ ~ ~ cos ~ + ~  cos2 

3 cosq]  × [K2(cf l ) - -~-~  

-t-/Z 4 ~- ~ COS 2 ~ - - K 3 ( ~ )  COS ~ + K 4 ( ( y )  

_ # ~ [ ~ + ~ _ ~ ) 2  1 [12~ 
_ 

--4 cos ~ + ~  cos 2 ~- -~  cos 4 ~ 

14 9 13 ] 
3 cos q~ + ~  cos 2 q~--~ cosa q + . . . .  (19) 

Each Ki (q~) is not a single integral but a combina- 
tion of the four integrals mentioned above. For 
i = 1 , 2 , 3 ,  K i ( ~ ) = K ~ ( z - ~ )  and for i = 4 ,  K4(~)=  
- K 4 ( 7 ~ -  ~). The values of K~(q) are given in Table 1, 
and selected values of A for the limiting case of a 
sphere are given in Tables 2, 3, and 4. Linear inter- 
polation can be used in Table 1. The values A(~)  
in Tables 2, 3, and 4 are taken from Bond (1959). 
The values A' (~)  are the direct summation of (19). 
The values of A" (~ )  are those of the sum of the 
series after the Euler transformation. 

Checking p rocedu re s  

The series for A evaluated at  q~=0, z for a sphere 
was checked term by term with the results of the 
exact integration. The final results for a sphere were 
in good agreement at q = 0, ~/4, z/2, 3~/4, ~ with the 
corresponding values obtained by Bond (1959) for a 
sphere. 

The integrals which were evaluated by summation 
were checked term by term against the exact integra- 
tion at  q = 0 ,  ~. The For Transit  program was sub- 
jected to careful checking and hand calculation of 
random terms for comparison. 

Absorption factor equation 
After the evaluation of the numerous integrals in (16), 
we can write 

Table 1. Values of .Ki (~) 

~o K1 K~ K a K 4 
0 0"6000 0"1429 0"1427 0-0000 
9 0"5990 0"1420 0"1419 0"0015 

18 0"5966 0-1405 0"1395 0.0044 
27 0"5924 0-1377 0"1355 0.0088 
36 0"5881 0"1342 0"1304 0"0133 
45 0"5828 0-1303 0"1246 0"0163 
54 0-5772 0-1261 0"1188 0"0171 
63 0"5721 0"1224 0"1134 0"0153 
72 0"5682 0"1193 0"1090 0.0115 
81 0-5658 0"1174 0"1061 0"0061 
90 0"5650 0"1167 0.1051 0"0000 

The values in Tables 2, 3, and 4 give a measure of 
the accuracy of the series. In  the general case, the 
accuracy can vary more from reflection to reflection 
than in the spherical case, due to the varying values 
of the -Y/. A good measure of the accuracy in an indi- 
vidual case is the value of the last term in the trans- 
formed series. 

A C 14 - -  34 
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Table 2. Selected values of A(0)for  a sphere 

#R A A" A'" 
0.1 0-8621 0.8613 - -  
0.4 0.5555 0.5556 - -  
0.8 0.3175 0.3109 0.3238 
0.9 0.2770 0.2644 0.2831 
1.0 0-2427 0.2191 0.2470 
1.1 0.2128 0.1719 0.2146 
1-2 0.1869 0.1196 0.1851 
1.3 0.1645 0-0581 0.1580 
1-4 0-1449 - -0 .0175  0.1329 
1.5 0.1282 - -0 -1129  0.1096 

Table 3. Selected values of A (7~/2)for a sphere 

~ R  A A '  A "  

0-1 0-8621 0.8628 - -  
0-4 0.5714 0.5727 - -  
0.8 0.3534 0.3340 0.3545 
1-0 0.2857 0-2215 0.2810 
1.2 0.2353 0-1030 0.2206 
1"4 0.1969 - -0 .2247  0.1705 
1.5 0.1812 - -0 .4399  0.1495 

Table 4. Selected values of A (~) for a sphere 

gR A A" A "  
0.1 0.8621 0.8648 - -  
0.4 0-5882 0.5886 
0.8 0.3922 0.3411 0-3921 
1-0 0-3322 0.1476 0.3238 
1.2 0.2865 - -0 .2312  0.2700 
1-4 0-2513 - -0 .9787  0.2323 

Since 1/N, < R, where R is the radius of a sphere 
containing the ellipsoid, the possible error for the 
ellipsoid is less than  tha t  for the worst diffraction 
angle of the surrounding sphere. However, this error 
relat ionship has not been demonstra ted for the trans- 
formed series. 

M e t h o d  of a p p l i c a t i o n  

The absorpt ion factor (19) is expressed in terms of 
~, Ni,  and  ~. The value of # can be obtained from the 
composition and  densi ty of the crystal. ~ is defined by 

N1. N2 = - N1N2 cos ~ ,  (20) 
where 0 0) 

N~ = 0 1/a~. 0 n~ . (21) 
0 0 1~as 

The values of a~ are obtained by  direct measurement  
of the crystal.  All tha t  remains to be supplied are 
the n~. 

The values of n~ depend upon the diffraction tech- 
nique, the orientation of the reciprocal latt ice and the 
orientat ion of the ellipsoid. Let  h be a reciprocal latt ice 
vector and define x as 

x = T h ,  (22) 

where X is h expressed in a suitable set of crystal  
cartesian coordinates, described by  the uni t  vectors ei. 

Diffraction occurs when some machine  operation R 
brings x into a l ignment  with the diffraction vector d, 

R x  = d = s - so,  (23) 

where s is the direction of the diffracted beam and 
So  is the direction of the incident  beam. s, so and  x 
are expressed in the same crystal cartesian coordinate 
system. We can now write 

n ;  = R - l  s o  , 

n '  = - -  R - 1  s . ( 2 4 )  

If S t ransforms a vector in crystal  cartesian coor- 
dinates to a vector in the cartesian coordinates of the 
ellipsoid as in Fig. 1, we now have 

~ =  S ( n ; / ~ ) .  (25) 

All of the quanti t ies  in (19) are now available.  As 
an example,  the specific equations for n i  will be 
derived for several diffraction methods. 

S ing le  c r y s t a l  o r i e n t e r  

Choose the crystal  cartesian coordinate system with 
uni t  vector e~ in the direction of the X-ray  source 
when 20 = 0  and unit  vector e~ along the axis of the 
goniometer head with Z--0. 

The operating design of the General Electric single 
crystal  orienter requires 

d -~ de; ,  
R = RI(Z) R2(~) R~-*(X) R~(X) , (26) 

o r  

R = RI(X) R2(~) , 

where RI(Z) R2(~) Ril(X) represents the ~ motion and 
RI(Z) represents the Z motion of the single crystal  
orienter. The angle ~ as used in this  section is not the 
same as the previous angle ~. q~ is used in this  section 
because of the single crystal  orienter terminology. 
The explicit  forms of Re and R1, are given by  

and 

cos~ s i n ~  0 
R2(~) = - s i n  q0 cos~ 0 

0 0 1 

CoX 0 sin X 
R1 (g) = 1 0 

k - s i n  Z 0 cos z 

We can now write, 

) 
(27) 

(28) 

Subst i tut ion of (28) into (24) and using (26) leads to 
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n~= R-~I( cf) R ~ (  z) REI (3---~- O) d 

n 2 = - R - ~ ( c P ) R ~ I ( z ) R E I ( ~ - ~ + O )  d (29) 

and then  (sin ) 
n 1 = xR2( -- ~) RI( -- Z) COS 

0 

(sin ) 
n~ = xR2( - cf) RI( - Z) - cos . 

0 (30) 

The angles 0, ~, Z are obta ined as the solution of 
the equat ion 

Re ( -  ~)R1 (-- g)d = x (31) 

and are given by 
0 ---- sin - i  ilx/2 , 
q? = t an  - i  xg./xi, 
Z = s in - i  x~/x.  (32) 

Subst i tu t ion of (30) into (25) now gives the required 
n~ values. 

E q u i - i n c l i n a t i o n  W e i s s e n b e r g  

Define the crystal  cartesian coordinate system, so tha t  
so lies in  the plane containing e~ and e~ for any  value 

t of/~, and  s lies in a cone whose axis is e a. The crystal 
is to be rota ted about  e~ to the diffracting position. 

We can now write 

so: 
1 

= cos ~) 
S 2( l+sin2t t )½ s i n / t  (33) 

where )l is the wavelength of radia t ion used, and  v 2 
is the  angle between e~ and  the projection of s onto 

t t 

the  plane containing ei and  e 2. We can now solve the 
equat ion for the Bragg angle 20, 

1 
s . s 0 = ~  cos 20 (34) 

for y~. This leaves the ambigui t ies  of 4-y~ in the 
defini t ion of s. The condition for diffraction requires 
a specification of whether  the reflection was measured 
on the top (si > 0) or bot tom (si < 0) of the recording 
film. Using this condition and the equat ion for cos y) 
obtained from (34), 

1 
cos yJ = ~ (sin 2 # + cos 20(1 + sin ~ #)½), (35) 

we have expl ic i t ly  defined s and  So in terms of # and  0. 
R for the Weissenberg method is s imply  the Re (~) 

of the previous section. The value of 97 to be used is 

de termined by  Re (~)x = s - so = d ,  

which is equivalent  to the equation 

x2 - x i  sin q? de " 

Subst i tut ion of these results into (24) will  then give, 
through (25) the required values of ni .  

B u e r g e r  p r e c e s s i o n  

Choose the crystal  cartesian coordinate system such 
tha t  ee is along the precession axis, and el is along the 
goniometer head axis. In  the notat ion of the precession 
camera, 

s1 .e2=81cos  v ,  
So. e2 = So cos # . (37) 

Define cf0 and ~i as the angles between el and the 
projections of So and  s onto the e,, e2 plane. We can 
now write 

/cos (po'~ 
I 1 ~cos # / 

So = ~  (1 + cos ~/.t)½ \s in  q?o/ 

and 

s l - - ~  (1 + cos 2 v)½ 
\s in  ~ i /  (38) 

The precession geometry can best be t reated by 
depar t ing from the previous t r ea tment  of the other 
diffraction techniques and by  t reat ing the reciprocal 
latt ice as s tat ionary.  We must  now solve (23) and  (34) 
for ~0 and  ~i for given # and v in order to define the 
diffraction direction for a given reciprocal latt ice point. 
Wi th  an ambigu i ty  of + in the sin ~i, we can solve 
(34) for cos ~i and sin ~i to give 

( c o s ~ i )  ( cos~0  s i n ~ 0 )  ( g ) 
sin ~91 = sin ~o --cos~o + (1_g2)  ½ , (39) 

where 
g = aia2 cos 20- -cos / t  cosy | 
ai = (I + cos 2 #)½ ] , (40) 
ag. = (1 + cos 2 ~)½ 

Subst i tut ion of (39) into (23) gives (xl) ---- /l , (41) 

x3 

which can be solved to give 

cos 

2 

1 1 2g 
a~+a21 aiao 

(42) 
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Subst i tut ion of (42) into (38) now gives s and so which, 
in this case, immedia te ly  produce the n ,  through (24) 
since R -1 is the ident i ty  operation. Because reflection 
to a given point  on the film occurs twice, correspond- 
ing to the _+ ambigui ty  in equat ion (42), both dif- 
fraction conditions must  be considered in an absorp- 
tion correction. 

I would like to express to Prof. B. C. Carlson my 

appreciat ion for his several, valuable  discussions con- 
cerning coordinate systems. 
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A Theoretical  Study of Pendel lSsung Fringes.  Part I. General Considerations 

By N. KATO 

Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts, U.S.A. 

(Received 19 May 1960) 

The assumption of an incident plane wave is shown to be not adequate for single-crystal experiments 
of X-ray diffraction (Laue case). A dynamical theory of diffraction is formulated for a general type 
of monochromatic incident wave. Fundamental  aspects of wave behavior are discussed in terms of 
wave-bundle considerations. Diffraction phenomena are classified by A 0 (an angular width of single- 
crystal reflection) and /20 (a width in which the angular spectrum of an incident coherent wave 
takes an appreciable value). If  A0 >~ £20, a plane-wave assumption is adequate. This is usually the 
case for electron diffraction. If  A 0 ~ £20' a spherical wave assumption is more appropriate and most 
of X-ray cases fall under this alternative. Furthermore, a criterion is given to distinguish between 
Fresnel and Fraunhofer diffraction in a crystalline medium. 'Pendell6sung' fringes of X-rays (Kate 
& Lang, 1959) can be interpreted as Fraunhofer diffraction, while those of electrons are observed 
in a Fresnel diffraction region. The essential features of section patterns, particularly 'hook-shaped' 
fringes, can now be explained. 

1. Introduction 

In  previous papers the first observations of X- ray  
PendellSsung fringes were reported (Lung, 1959; K a t e  
& Lung, 1959). In  addition, new types  of diffraction 
fringes were obtained in section topographs under  the 
experimental  conditions fully described. These fringes 
are essentially due to interference between two kinds 
of crystal  waves which correspond to different branches 
of the  dispersion surface. Thus they  have to be ex- 
plained by a dynamical  theory  of diffraction. 

'PendellSsung'  interference effects were discovered 
first in electron-microscope experiments  and could be 
well explained by dynamical theory.* Thus it seemed 
quite na tu ra l  to apply  this theory  to X-rays  because 
it is general ly accepted t ha t  the theory  is essentially 
the same for both electron and X - r a y  diffraction. 
However,  as shown briefly in the previous paper  
(Kate  & Lang, 1959), section pa t te rns  cannot  be 
interpreted in a s t ra ight forward  manner  by the usual 
dynamical  theory.  In  fact,  they  imply t ha t  we have  
to consider a divergent  coherent wave instead of an 

* A detailed historical survey is given in the previous paper 
(Kate & Lung, 1959). 

ideal plane wave as the incident wave (Kate ,  1960b). 
The same is t rue  for the general X - r a y  case, as shown 
in Section 2 by a simple argument .  Hence, we mus t  
formulate  the dynamical  theory  for a general type  of 
incident monochromatic  wave (Section 3). This is the  
main object of the present  paper.  In  the  following 
sections, only fundamenta l  aspects of wave behavior  
are discussed on the  basis of wave bundle considera- 
tions. A fur ther  development  of the  theory  and 
detailed discussion of 'PendellSsung'  phenomena will 
be reserved for the next  paper.  

2. Pre l iminary  considerat ions  

The usual dynamical  theory  m a y  be summarized as 
follows. First ,  we assume a plane wave as an incident 
wave (PW assumption).  As crystal  waves we consider 
a sort of Bloch wave function. This is a general type  of 
wave in a medium of periodically dis t r ibuted scatterers.  
The incident wave and the crystal  waves are connected 
by  boundary  conditions including the tangent ia l  con- 
t inu i ty  of wave vectors a t  the  surfaces of the  crystal  
(TC assumption).  In  the surrounding vacuum,  we 


