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By D. R. FITzZwWATER

Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, ITowa, U.S. 4.

(Received 27 January 1960 and in revised form 17 June 1960)

The absorption factor integral for a general ellipsoidal crystal was transformed to spherical polar
coordinates. The resulting exponential in the integral was expanded in a power series and the triple
integration was carried out term by term. The process was stopped after the fifth order term but
could be carried further. Four integrals could not be directly integrated and were evaluated by
series expansions and integrations. The resulting series were tabulated as a function of one parameter.
The termination of the absorption factor series with the fifth order term gives results for a sphere

with <29, error for uR =1-0.

Introduction

The ellipsoidal crystal is a good approximation to
many real crystal forms, and ellipsoidal absorption
factor corrections should be satisfactory for film
accuracies with many crystal forms. In addition,
grinding an anisotropic crystal quickly produces ellip-
soids and may not produce spheres even after con-
tinued grinding. The size of the final spheres, if any,
may also be too small. Consequently, very accurate
ellipsoidal corrections are useful for counter work with
such crystals.

. The difficulty of carrying out the required integra-
tion in such a case for each reflection is prohibitive.
Because of the large number of parameters affecting
the ellipsoidal absorption factor, tabulation of the
absorption factor is not feasible. The only remaining
possibility is to obtain the ellipsoidal absorption factor
as a function of its parameters. This required an
analytical integration of the expression

A=1/Vc§ talexp{—,u(g1+@2)}dV, (1)
vlrys

volume

where A is the absorption factor, V. is the volume of
the-crystal, u is the linear absorption coefficient for
the crystal, o1 and g2 are the path lengths in the
crystal of the incoming and diffracted X-ray beam
element. By expanding the exponential in the inte-
grand, the integration may be carried out. The labor
of integrating each term of the series is such that the
series is terminated as soon as is possible. The choice
made here gives, in the special case of a sphere,
accurate absorption factors up to a uR of 1-4. This is
a very useful range for crystals with < 100.

Derivation of the absorption factor equation

The first step is to express (I) in a more suitable
coordinate system. The transformation

* Contribution No. 803. Work was performed in the Ames
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x; =x;a;

(t=1,2,3) (2)

has the Jacobian aiasas, where the a; are the axes
of the ellipsoid. The absorption factor (1) can now be
written as

A=(1/Vc)\.exp {—ulo1+ g2)}aaazasdV’,  (3)

where dV'=dz,dx,dx;. Since the volume of the crys-
tal is
Ve=4%naiaq:as (4)

the a;aza3 factor in (3) will cancel. The limits of inte-
gration in (1) correspond to the surface of the ellipsoid

3
2 (xias)2=1, (5)
i=1

where z; are the components of a vector from the
origin to the surface of the ellipsoid. The transforma-
tion (2) now gives as the limiting surface

3

(z;)*=1, (6)

i=

-

which is a sphere of unit radius. We can now write
(1) as

3¢ , i
A=\ e {-uatendv. ()

sphere

The index 1=1, 2 will be used to denote the variables
referring to the incoming and outgoing X-ray beam.
Thus g; represents either gi or g2. Let mi represent
a unit vector defining the direction of the incoming
X-ray beam and let n; represent a unit vector defining
the negative of the outgoing X-ray beam direction.
Let r; represent a vector from the origin to the
entrance point on the ellipsoidal surface of n;. Let r
represent a vector from the origin to the volume
element under consideration. The relationships of
these vectors are shown in Fig. 1.
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Fig. 1. Coordinate system for the ellipsoid, based on unit
vectors €; along the axes of the ellipsoid. n, is a unit vector
in direction of incoming X-ray beam and n, is a unit vector
in the direction opposite to the outgoing X-ray beam.
0; are corresponding path lengths in the crystal.
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Fig. 2. Transformed coordinate systems. Each vector com-
ponent is obtained from the vectors of Fig. 1 by dividing
by the corresponding ellipsoidal axis. The equation for the
ellipsoid goes into an equation for a sphere under this
transformation.

By transforming the vectors in Fig. 1 as in (2),
we obtain the corresponding capital letter vectors of
Fig. 2, where N; are no longer unit vectors. We must
now obtain an expression for g;. We have, from
Fig. 1,

ri=r—g:n;, (8)
which becomes
R;=R—9;:N: (9)
after transformation by (2). Since
Ri=1, (10)

we can solve (10) for g: and obtain

0i=1/Ni{R cosp:+[1—R2sin2y;]t},  (11)
where

R.N;=REN; cosp; . (12)
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Fig. 3. Spherical polar coordinates. The coordinate axes
X, Y and Z are chosen as above for convenience in the
derivation of (13). (IV, is parallel to Z and N, is in the YZ
plane.)

If (7) is transformed into spherical polar coordinates
as in Fig. 3, the integration can be carried out after
expressing w2 in terms of 1 as

€S =08 Y1 c0s (7 — @) +sin ;1 sin (7 — @) cos o .
(13)

Interchange of N; and Nz will not affect the value
of the integral, and so interchanging subscripts in (13)
simply amounts to a change in the definition of the
polar coordinates. Consequently, as a result of this
invariance, we can write

S (N101)*(Naga)md V" = S (N101)"(Naga)rd V', (14)

Expansion of the integrand of (7) in a power series
gives

exp — p(@1+02) =2 (— u) (e1+2)/(h)!
7

) (—py

o W1e (Va0 7 - (18)
14'2

1 /i

—sx ()

i » (NP,

If we now integrate this expression, while using (14)
to combine terms, we obtain

A=§z{1_u(ﬁl}+%§)SfldV'Jrg;(l—é—%ﬂ%) {2
o R

(11 W v
Bprr 1 1 av+...|, e
31 (N%N2+N1N§ Vif2aV'+ (16)

where f;= N, 0;. The majority of the integrals required
in (16) can be expressed in terms of other, simpler,

integrals and either evaluated directly or by the use
of the definite integrals compiled by DeHaan (1939).
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Even so, the process is quite tedious. There is no
reason, other than the labor involved, why the process
could not be continued through additional terms.
At the present time the integration is carried out
through the terms involving 5. The addition of only
a few extra terms would increase substantially the
range of convergence of the resulting series because
the factorial in the denominator is just becoming
dominant. At this point, there remain only four
integrals involving, among other quantities, products
of [1— R2sin2y;]#[1 — R? sin? y,)* which could not be
evaluated. In each such case, the argument was ex-
panded in multiple power series and the general term
integrated. The resulting series were then summed by
writing a For Transit program for the IBM 650.
These integrals are only a function of ¢ and do not
vary rapidly. Consequently, it was sufficient to carry
out the summations for only a relatively few values
of ¢ and to use Lagrangian interpolation to sub-
tabulate.

The series expression for 4 was terminated at the
point where the factorial in the denominator is
becoming dominant. Consequently, convergence above
uR=1 for the limiting case of a sphere is very poor.
Since the series is an alternating series, the use of the
Euler transformation as described by Booth (1955)
leads to great improvement in accuracy near the
values of yuR=1 and extends the useful accuracy to
uR=1-4. The Euler transformation gives the sum of
the series

§=3 (— 1) (17)
i=0

as
S=§[uo—l2=4] u0+;}A2uo-—§Asuo+ R I

where Awug=1u1—uo. The best results are obtained by
summing the first three terms directly and trans-
forming the last three.

(18)

Checking procedures

The series for A evaluated at ¢=0, = for a sphere
was checked term by term with the results of the
exact integration. The final results for a sphere were
in good agreement at ¢ =0, 7/4, n/2, 37/4, & with the
corresponding values obtained by Bond (1959) for a
sphere.

The integrals which were evaluated by summation
were checked term by term against the exact integra-
tion at ¢=0, 7. The For Transit program was sub-
jected to careful checking and hand calculation of
random terms for comparison.

Absorption factor equation

After the evaluation of the numerous integrals in (16),
we can write

AClea—34
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Each K;(¢) is not a single integral but a combina-
tion of the four integrals mentioned above. For
1=1,2,3, Ki(p)=Ki(n—¢p) and for i=4, K4(p)=
— K4(7t— @). The values of K;(g) are given in Table 1,
and selected values of 4 for the limiting case of a
sphere are given in Tables 2, 3, and 4. Linear inter-
polation can be used in Table 1. The values A(¢)
in Tables 2, 3, and 4 are taken from Bond (1959).
The values A'(p) are the direct summation of (19).
The values of A" (¢) are those of the sum of the
series after the Euler transformation.

Table 1. Values of K:(¢p)

@° K, K, K K,

0 0-6000 0-1429 0-1427 0-0000

9 0-5990 0-1420 0-1419 0-0015
18 0-5966 0-1405 0-1395 0-0044
27 0-5924 0-1377 0-1355 0-0088
36 0-5881 0-1342 0-1304 0-0133
45 0-5828 0-1303 0-1246 0-:0163
54 0-5772 0-1261 0-1188 0-0171
63 0-5721 0-1224 0-1134 0-0153
72 0-5682 0-1193 0-1090 0-0115
81 0-5658 0-1174 0-1061 0-0061
90 0:5650 0-1167 0-1051 0-0000

The values in Tables 2, 3, and 4 give a measure of
the accuracy of the series. In the general case, the
accuracy can vary more from reflection to reflection
than in the spherical case, due to the varying values
of the N;. A good measure of the accuracy in an indi-
vidual case is the value of the last term in the trans-
formed series.
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Table 2. Selected values of A(0) for a sphere

uR 4 A’ ar
01 0-8621 08613 —
-4 0-5555 0-5556 —_
0-8 03175 0-3109 0-3238
09 0-2770 0-2644 0-2831
1:0 0-2427 02191 0-2470
1-1 0-2128 0-1719 0-2146
1-2 0-1869 0-1196 01851
13 0-1645 0-0581 01580
1-4 0-1449 —0-0175 0-1329
15 01282  —0-1129 01096

Table 3. Selected values of A (7/2) for a sphere

uR A A’ A
0-1 0-8621 0-8628 —
0-4 0:5714 0-5727 —
0-8 0-3534 0:3340 0-3545
1-0 0-2857 0-2215 0-2810
1-2 0-2353 0-1030 0-2206
1-4 0-1969 —0-2247 0-1705
1-5 0-1812 —0-4399 0-1495

Table 4. Selected values of A(n) for a sphere

uR A A’ A
0-1 0-8621 0-8648 —
0-4 0-5882 0-5886 —_
08 0-3922 0-3411 0-3921
1:0 0-3322 01476 0-3238
1-2 0-2865 —0-2312 0-2700
14 02513  —0-9787 02323

Since 1/N; < R, where R is the radius of a sphere
containing the ellipsoid, the possible error for the
ellipsoid is less than that for the worst diffraction
angle of the surrounding sphere. However, this error
relationship has not been demonstrated for the trans-
formed series.

Method of application

The absorption factor (19) is expressed in terms of
1, Ni, and @. The value of u can be obtained from the
composition and density of the crystal. ¢ is defined by

Ni.Ne=—N1Nzcos ¢, (20)
where
l/lay O 0
N: = ( 0 l/az O > n;. (21)
0 0 1/(13

The values of a; are obtained by direct measurement
of the crystal. All that remains to be supplied are
the n;.

The values of n; depend upon the diffraction tech-
nique, the orientation of the reciprocal lattice and the
orientation of the ellipsoid. Let h be a reciprocal lattice
vector and define x as

x=Th, (22)

where X is h expressed in a suitable set of crystal
cartesian coordinates, described by the unit vectors e;.
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Diffraction occurs when some machine operation R
brings x into alignment with the diffraction vector d,

Rx=d=s—sg, (23)
where s is the direction of the diffracted beam and
So is the direction of the incident beam. s, s¢ and x
are expressed in the same crystal cartesian coordinate
system. We can now write

n, =R-1so,
n'=—R-ls. (24)
If S transforms a vector in crystal cartesian coor-
dinates to a vector in the cartesian coordinates of the
ellipsoid as in Fig. 1, we now have
n;=8(n;/n;) . (25)
All of the quantities in (19) are now available. As
an example, the specific equations for n; will be
derived for several diffraction methods.

Single crystal orienter

Choose the crystal cartesian coordinate system with
unit vector e, in the direction of the X-ray source
when 26=0 and unit vector e; along the axis of the
goniometer head with y=0.

The operating design of the General Electric single
crystal orienter requires

d = de;,
R = Ry(y)Ry(9) BT (%) Ru(2) (26)

R = Ri(y) Re(9) »

or

where R;(x) Ro(¢) Ri'(y) represents the ¢ motion and
Ri(y) represents the y motion of the single crystal
orienter. The angle ¢ as used in this section is not the
same as the previous angle ¢. ¢ is used in this section
because of the single crystal orienter terminology.
The explicit forms of R. and R, are given by

cosgp sing 0
Ry () =<—sin(p cosep O],
0

0o 1
and
cosy 0 siny
Ri(y) = 0 1 0 .
—siny O cosy (27)
We can now write,

%:@%@—@d,

2

3n

= —1 ("7

Substitution of (28) into (24) and using (26) leads to
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: 3
n; =Ry (g) Br'(y) Bz (7” - 0) d

, 3
nj~— () B () B (57 +6) @

(29)
and then
—sin 6
n; =zRa(— @) Ri(— ) <—cos 0 )
0
sin 0
n2'=xR2( - (p) R1( — x) (—COS 0 ) .
0 (30)

The angles 0, ¢, x are obtained as the solution of
the equation

Re(— @)Ri(— x)d=x (31)
and are given by
0 = sin-! Ax/2,
@ = tan—! za/w1 ,
x = sinlag/x. (32)

Substitution of (30) into (25) now gives the required
n; values.

Equi-inclination Weissenberg

Define the crystal cartesian coordinate system, so that

So lies in the plane containing e, and e, for any value

of u, and s lies in a cone whose axis is e;. The crystal

is to be rotated about e; to the diffracting position.
We can now write

So=+| cosu
A\ _sin ]

1 ( sin )
§ = ————| cosyp
A(l+sinz )\ o 1 (33)
where A is the wavelength of radiation used, and y
is the angle between e, and the projection of s onto

the plane containing e; and e,. We can now solve the
equation for the Bragg angle 26,

% cos 20
for o. This leaves the ambiguities of 4+ in the
definition of s. The condition for diffraction requires
a specification of whether the reflection was measured
on the top (s1>0) or bottom (s; <0) of the recording
film. Using this condition and the equation for cosy
obtained from (34),

S.§y= (34)

cos p= (sin? u+ cos 26(1 +sin? u)?) , (35)

Ccos 1

we have explicitly defined s and so in terms of 4 and 6.
R for the Weissenberg method is simply the Rz (gp)

of the previous section. The value of ¢ to be used is

determined by Re(p)x=s—so=d
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which is equivalent to the equation
1 X cosp\ _ (di
g —X1 sin "4 T \ds )’
Substitution of these results into (24) will then give,
through (25) the required values of n;.

(36)

Buerger precession

Choose the crystal cartesian coordinate system such
that ez is along the precession axis, and e; is along the
goniometer head axis. In the notation of the precession
camera,

S;.€2=81COsS 7,

So.€2=280 COS ! . (37)
Define o and ¢:1 as the angles between e; and the
projections of s and s onto the e;, e; plane. We can
now write

1 1 <cos (po)
So== —————(cos u
A(L+ecos? u)t\ @

1 1 <cos q)1>
Si=,-—7—— —~—37|COS ¥V .
A1+ cos?v)d o

and

(38)

The precession geometry can best be treated by
departing from the previous treatment of the other
diffraction techniques and by treating the reciprocal
lattice as stationary. We must now solve (23) and (34)
for @o and ¢ for given x and » in order to define the
diffraction direction for a given reciprocal lattice point.
With an ambiguity of + in the sin¢i, we can solve
(34) for cos g1 and sin ¢ to give

cosgr\ _ (cosge sin go g
i) = (5 -] (sl ) o0
where
g =
a1 = (1+cos? u)}
az = (1+cos?v)?

a1az cos 20 — cos y cos v
} , (40)

Substitution of (39) into (23) gives

1\ [+ (1—g2?}
(.g _.__> (Lg_)_> cos (po 1
ai ag a1
N =2 , (41)
(FOR) (-2 \
_— —_—— sm Qo x3
ay air Qo
which can be solved to give
COS Qo
sin gqg
(-2 (F27)
— — —— —_—— . xl
A a1 ao a :
= e 1. (42)
1 1 % (i(1—92)5> (g 1>
S+ 5— — \|—T] [ —— Z3
Ay a; Mo a ay Qo//.
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Substitution of (42) into (38) now gives s and so which,
in this case, immediately produce the n, through (24)
since B! is the identity operation. Because reflection
to a given point on the film occurs twice, correspond-
ing to the + ambiguity in equation (42), both dif-
fraction conditions must be considered in an absorp-
tion correction.

I would like to express to Prof. B. C. Carlson my
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appreciation for his several, valuable discussions con-
cerning coordinate systems.
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A Theoretical Study of Pendellosung Fringes. Part 1. General Considerations

By N.Kato

(Recetved 19 May 1960)

The assumption of an incident plane wave is shown to be not adequate for single-crystal experiments
of X-ray diffraction (Laue case). A dynamical theory of diffraction is formulated for a general type
of monochromatic incident wave. Fundamental aspects of wave behavior are discussed in terms of
wave-bundle considerations. Diffraction phenomena are classified by 46 (an angular width of single-
crystal reflection) and , (a width in which the angular spectrum of an incident coherent wave
takes an appreciable value). If 46 > Q,, a plane-wave assumption is adequate. This is usually the
case for electron diffraction. If 46 < ,, a spherical wave assumption is more appropriate and most
of X.ray cases fall under this alternative. Furthermore, a criterion is given to distinguish between
Fresnel and Fraunhofer diffraction in a crystalline medium. ‘Pendellésung’ fringes of X-rays (Kato
& Lang, 1959) can be interpreted as Fraunhofer diffraction, while those of electrons are observed
in a Fresnel diffraction region. The essential features of section patterns, particularly ‘hook-shaped’

Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts, U.8.A4.

fringes, can now be explained.

1. Introduction

In previous papers the first observations of X-ray
Pendelldsung fringes were reported (Lang, 1959; Kato
& Lang, 1959). In addition, new types of diffraction
fringes were obtained in section topographs under the
experimental conditions fully described. These fringes
are essentially due to interference between two kinds
of crystal waves which correspond to different branches
of the dispersion surface. Thus they have to be ex-
plained by a dynamical theory of diffraction.
‘Pendellosung’ interference effects were discovered
first in electron-microscope experiments and could be
well explained by dynamical theory.* Thus it seemed
quite natural to apply this theory to X-rays because
it is generally accepted that the theory is essentially
the same for both electron and X-ray diffraction.
However, as shown briefly in the previous paper
(Kato & Lang, 1959), section patterns cannot be
interpreted in a straightforward manner by the usual
dynamical theory. In fact, they imply that we have
to cons(\ider a divergent coherent wave instead of an

* A detailed historical survey is given in the previous paper
(Kato & Lang, 1959).

ideal plane wave as the incident wave (Kato, 19606).
The same is true for the general X-ray case, as shown
in Section 2 by a simple argument. Hence, we must
formulate the dynamical theory for a general type of
incident monochromatic wave (Section 3). This is the
main object of the present paper. In the following
sections, only fundamental aspects of wave behavior
are discussed on the basis of wave bundle considera-
tions, A further development of the theory and
detailed discussion of ‘Pendellésung’ phenomena will
be reserved for the next paper.

2. Preliminary considerations

The usual dynamical theory may be summarized as
follows. First, we assume a plane wave as an incident
wave (PW assumption). As crystal waves we consider
a sort, of Bloch wave function. This is a general type of
wave in a medium of periodically distributed scatterers.
The incident wave and the crystal waves are connected
by boundary conditions including the tangential con-
tinuity of wave vectors at the surfaces of the crystal
(TC assumption). In the surrounding vacuum, we



